FVM Factory overview

Rev 0.4 dated 10/2/2006

FVM Factory is a set of Win32 programs supportiogtk Virtual Machine (FVM) development
for embedded applications.

Why FVM?

FVM is very simple, compact, fast and powerful. 3&gualities ensure that FVM is well suited to
be an interpreter engine in embedded applicatiwhsere smaller code size is an advantage.

FVM is a virtual stack processor. It employs twacgs, Data Stack and Return Stack. All
calculations made on Data Stack (or simply Staék@turn Stack is more specific, mainly used for
holding return addresses of subroutines.

Since a stack does not need explicit addressirgjack machine is a 0-address processor. This
means that opcodes for the stack processor donohkide the addresses of operands. As a result,
opcodes are short, and programs written for FVM\amg compact. To learn more about stack
computers please refer to the excellent book olifPhi Koopman, JrStack Computers: the new
wave.

Is it yet another Forth?
No.

Typically Forth is a self-contained system. Oncethirés ported to a target, it can do anything. It
serves you as compiler, interpreter, debuggeryven @s an operating system. However, in return
Forth requires that you write your programs in kdainguage.

FVM is just a virtual processor, or a bytecodenpteter. Forth usually uses FVM, however not all
FVMs may be compatible with Forth.

FVM Factory uses a cross-compiler. Compiler funwidor the target FVM are not included into
the target. The compiler for a given FVM existad3C console application.

FVM Factory helps create application-specific FVMisis not concerned with Forth standards
compatibility. Many Forth features are not impleeehby FVM Factory, because its goal is to
make the FVM code as small and as simple as pessibl

The created FVM is written in ANSI C language.dnde included as an interpreter engine into an
embedded application written in C. Tokens or preyeited functions (scripts) can be invoked from
C code.

FVM Factory uses some elements of C language fgutscsuch as #define. Also, both Forth style
and C/C++ style comments are allowed in scripts.

What kind of FVM will be created?

FVM Factory creates 16-bit FVMs with indirect thdéag code. FVM bytecodes can be 1-byte, 2-
bytes and 3-bytes long.

FVM console is case insensitive. Thus, the scfgt$VM will also not be case sensitive.

How to use it?
Unzip FVM_factory.zip into a working folder. Theage the following subfolders in the archive:

-- Console

-- Doc

-- Target

-- Tok_compiler

Step 1. Compile FVM_factory from the supplied soure code

Go to theTok_compiler folder. Using Lazarusttp://www.lazarus.freepascal.orgbmpile the
supplied FVM_factory project. The resulting progrefVM_factory.exe. It is a token compiler; it
converts a token's description file into a set dé@plate files. When FVM_factory.exe is started it
should look as follows:

Il F¥M factory token compiler =10l x|

File &bout

Step 2. Edit your token's description file

Using any text editor, edit your token's descriptide. There is a sample filokens.bcdin the
folder Console it can be used as a template. This file showdddll the tokens for your virtual
machine. Your token description file should behia@€onsolefolder as well.

There is a minimum set of tokens required for coengb operate properly; those tokens are listed
in the filerequired_tokens.cin the folderConsole

Your token's description should obey the followswgple rules:
« Only line comments are permitted. The line comnséoiuld start with double slash, //.

Directives #1, #2 and #3 specify that following ¢ok will have length of 1, 2 or 3 bytes
respectively. Those directives must be the firstdwaf a line; the rest of that line is treated
as comment.

- Every token description should occupy one line.

The first word in the line should be a unique tokeame complying with the rules for
function names in C language. Chars like ".,<' &te not permitted. The FVMFactory
compiler will convert this name into lower case ahdn create a C function prototype,

adding the letters "fvm" in front. All created FVidnctions are void (void).
For example, if a token name is DUP, then FVMFactuitl create the following definition:

voi d fvndup(voi d)

{
} /* end */

- A second word in the line is optional. This woraitoken name complying with the rules of
Forth language. If the second word does not etkistFVMFactory will use the first word as
the token name.

For example, if the required Forth word is >R, thka C-name can be "TOR", and the
token definition can be as follows:

TOR >R

- Stack comments start with a stand-alone left brébe.rest of the line after the left brace is
considered to be a meaningful comment for the tolerd it will be included into the
embedded help system. Working with the consoleiegipmn you will see this comment
when you type "help MyToken", where "MyToken" iettoken name. Please note that the
comment will be printed by the standard C printidtion, and you can use printf formatting
symbols.

For example, here is a definition of token DUP uigithg help information:

DUP (X -- x x)\'nDuplicate x
Step 3. Compile tokens description
Start FVMFactory.exe.

Click File/Target directory and select a C file in your target folder where #mbedded FVM
should be. This tells FVMFactory where to put aoselccopy of the compiled files.

Click File/Open and select your token description file in tbensolefolder.

OTKPBITE CYWECTEYHIMA thaiin 2=
Laak in: I |23 Conzale LI L =F E3-

ﬂ FuwM_tokenz.h &] main.c {i} token_info.c
@ Fur_tokenz b~ @ main.o @ token_info,c~
F¥M_tokenZ.o @ Makefile . win dl] token_info.h
|€] F¥M_taken3.c @J other.h @ token_info,hes
|| FwM_token3.cos .,ﬁj parser.c @token_info.o
ﬂ FuM_token3.h Q] parser.h
@ FuM_token3.he =l parser.o &_3 WOC,C
@ FwM_tokens.o &3 required_tokens.c Q’JJ woc.h

F¥MFactaory.exe @J required_tokens.h | voc.o
& FyMFactory.ini @ required_tokens.o

macro,c .,{‘j std_tokens.c
22| macro.h .'ﬁj test.F
@ macro, o gj bo_do.kxk
4 I+
File name: Itokens.bcd :I Open I
Files of lype: IAII File Types(*.") ;I Cancel |

I Open as read-only
2

FVMFactory will compile a description file and wileate/update two sets of C files.

In the local folder (in our case - in t®nsolefolder) it will create/update the following files:

-- FVM_tokenl.c, FVM_tokenl.h
-- FVM_token2.c, FVM_token2.h
-- FVM_token3.c, FVM_token3.h
-- FVM_exe.c, FVM_exe.h

-- token_info.c, token_info.h

In the target folder it will create/update the doling files:

-- FVM_tokenl.c, FVM tokenl.h
-- FVM_token2.c, FVM_token2.h
-- FVM_token3.c, FVM_token3.h
-- FVM_exe.c, FVM_exe.h

If those files already exist in their respectivédtys, FVMFactory will make backup copies. It will
also parse the existing FVM files, trying to findyaalready written C code for the specified tokens.
If the code exists, FVMFactory will copy the cortterfi C functions into the files being updated.
This supports incremental code development.

FVMFactory also checks if a file callestd_tokens.cis present in the local folder (eg in the
Consolefolder). If this file is present, FVMFactory witlarse it trying to find C functions matching
tokens' definitions there. If successful, FVMFagtaill copy the body of the matching C functions
directly into the FVM switch function situated ingFVM_exe.cfile. In this case, a C function in

the respective file FVYM_tokenX will not be creatéal.other words, FVMFactory considers the file
std_tokens.cas a kind of repository storing already createtl @gbugged FVM tokens.

Step 4. Add C code to your custom tokens

Edit the files created by the FVMFactory in tl®nsole folder. To access stacks use FVM
primitives defined in thd=VM.c file. Please refer to the code in thiel_tokens.cfile to see how
those primitives can be used.

Step 5. Compile console application and debug yotwkens

FVM Factory console code has been developed uSegC++ 4.9.9.2.You can use other C
compilers and IDE of your choice. The following pedlure is described for Dev-C++.

Download and install Dev-C++ from SourceFordmtp://sourceforge.net/projects/dev-cpp

In the Consolefolder, open the Dev-C++ project fileVM_console.devand compile the project.
The resulting console application should look de¥es:

c G2 Progh F¥M_Factory' Consolet)
FUM Factory Console

0K

Test and debug your tokens. To execute a tokentypst its Forth name, as FVM console is

already aware of your custom tokens.

To put a number on top of the stack, just typ&¥M console compiler will convert the number
into appropriate literal tokens.

1 23 4 -1 100 >
0K

The number can be decimal or hexadecimal, deperutirige base. The default base is decimal. To
change the base to hex, type:

HEX
To change the base to decimal type

DECI MAL
To enter hex numbers while the base is decimal@smnventions. For example, to enter hex
number F5, type:

OxF5
Repeat steps 2 to 5 to add more tokens as required.
Step 6. Create and debug scripts for your FVM

Script words are defined in the same way as inhEéibr example, let's define the word "square”
and test it:

FUM Factory Console
square ¢ ¥ — x"2 3 dup = ;

Square

.z
Block comment and line comment are automaticaltyuided into the help system:

o 34 ProjtF¥YM_factoryh Console' F¥M
OK> help square

Uocabulary FORTH. word SQUARE ¢ x — x™2
L L

OK>

FVM console compiler is aware of the following Fodontrol statements:

IF ELSE THEN

e G Projt, F¥YM_Factory' Console'\F

L
OK> 2 8 > if 12 else 356 then

If-else-then statements can be used both in comrhaedand in word definitions. They can be
nested.
DO LOOP

e G Proft F¥M_factory' Console’,F

L]
OK> 10 @ do i loop
0123456 789>

0K>

Do-loop is a loop with a counter. FVM console alsaware of related Forth words I, J, LEAVE.

BEGIN UNTIL

e G2 Prot F¥M_Factory' Console’,F

L]

OK> 10 begin
2876054
OK> _

Another loop is the begin-until loop with end cammh checking.

Script definitions can be stored in an externat fég. To compile an external file use the word
INCLUDED as shown in the following example:

co G2 Proph F¥M_factory' Console'\F¥
OKE> =" test.f" included

Files can be nested; the nesting depth limit is 100

Step 7. Cast compiled scripts into target applicatin

When all scripts have been compiled and debugdedrdsulting bytecodes can be cast as a C
source file (array). To cast your code ty&VE at the end of the line.

e G2 Proft F¥M_factory' Console' F¥M
FUM Factory Console

OK> =" test.f" included
L]
OK> InitTarget begin Main 1 wntil zave

The result is stored in the fievM_code.cin theConsolefolder. For example, the content of that
file might look as follows:

/* FVM Factory */

/* Bytecodes conpiled by FVM console */

uchar FVM code[] = {

75, 0, 21, 70, 87, 70, 128, 70, 255, 70, 144, 60, 77, 0, 3, 60,
6, 7, 45, 18, 60, 77, 0, 12, 77, 0, 16, 2, 73, 250, 255 };

The first three bytes in that example constitut8-layte token, LGOTO 21. It is generated
automatically by the FVM_console compiler. Addrexk is the address of the first compiled
command related to the lintnitTarget begin Main 1 until .

Addresses 3 to 20 are filled by bytecodes compiledn the filetest.f was included. The file stores
a user's definitions, including the wordsitTarget "and 'Main". At address 21 you can find the 3-
byte token _LCALL 12. This token calls th&nltTarget " word; its definition starts at address 12
and ends at address 15 by a 1-byte token, RETURN.

There is a 3-byte token, LCALL 16, at addresslI24alls the Main" word, which is at address
16. Next is a 1-byte token, LIT1. Finally, a 2-byt&en, SJINZ -5, relates to the wouohtil .

As you can see, the compiled code is quite comphdike Forth, it does not store any link fields
or word names. FVM_console takes care of thos@sssu

Actual bytecode values depend on the order in wioklens are listed in the description file (see
Step 2). For your own FVM, these codes might diffem the given example.

Step 8. Compile your target application

Copy all source files whose names start with FVkbnf theConsolefolder into your target folder
and compile your target application. Here is tBedf the required files:

-- FVM_tokenl.c, FVM_tokenl.h

-- FVM_token2.c, FVM_token2.h

-- FVM_token3.c, FVM_token3.h

-- FVM_exe.c, FVYM_exe.h

-- FVM.c, FVM.h

-- FVM_code.c

The target folder also should have the followirgsf
-- other.h
-- config.h

